东南大学张亚副教授学术报告(2019年4月28日)

来源:自动化学院   发布时间:2019-04-26

报告题目: A Fully distributed weight design approach to consensus Kalman filtering

报告人:张亚

时间:201942816:00-16:50

地点:仙林校区自动化学科楼321会议室

主办单位:自动化学院、人工智能学院

报告人简介:

张亚,女,1981年生,江苏常州人,工学博士,副教授,博士生导师。近年来主持国家自然科学基金项目2项,江苏省自然科学基金项目1项,江苏省“六大人才高峰”高层次人才选拔培养资助项目1项,东南大学优秀青年教师科研资助计划、东南大学创新基金、以及教育部重点实验室开放课题项目各1项;参与国家自然科学基金项目2项,参与完成国家军口863计划项目1项、国家自然科学基金重点项目。现为IEEE会员,中国自动化学会青年工作委员会委员,中国人工智能学会智能空天系统专业委员会委员,中国自动化学会控制理论专委会多智能体系统学组成员。

研究方向包括传感器网络、多智能体系统、网络化控制等方面。发表论文40余篇,论文他引400余次, 2008年入围关肇直奖。担任AutomaticaIEEE Transactions on Automatic ControlSystem & Control Letters、自动化学报、中国科学等多个国内、国际期刊的审稿人。博士学位论文被评为“2011 年东南大学优秀博士学位论文”,获得东南大学青年教师授课竞赛三等奖、“常州市人民政府奖教金,菲尼克斯电气--东南大学奖励金一等奖。2017年入选江苏省“六大人才高峰”高层次人才选拔培养资助计划,2015年入选东南大学优秀青年教师资助计划。

报告摘要:

This presentation proposes a consensus Kalman filtering algorithm based on the leader-follower structure and weighted average strategy for sensor networks. By introducing virtual estimation errors and confidence level functions, the weights are fully distributively and adaptively designed in a proportion form of the sensors' confidence levels. It is proved that for time-invariant networks, the mean square estimation errors of all sensors are bounded if and only if the process node in the extended topology is globally reachable. For random networks with Bernoulli communication packet dropouts, the estimation errors are bounded in probability if and only if the process node in the union of all possible extended topologies is globally reachable. For arbitrarily switching communication networks, the mean square estimation errors are bounded as long as there exists an infinite sequence of uniformly bounded, non-overlapping time intervals such that the process node in the union of the extended topologies across each interval is globally reachable. For time-varying sensing networks with strongly connected communication topology, the estimation errors are bounded in mean square sense if the process node in the extended topology keeps globally reachable. Simulation examples are given to illustrate the theoretic results. 


联系我们
地址:南京市亚东新城区文苑路9号
邮编:210023
电话:025-85866506
传真:025-85866504
院长信箱:zdh@njupt.edu.cn
书记信箱:ai@njupt.edu.cn

版权所有©南京邮电大学自动化学院 人工智能学院